Friday, 2 February 2018

مؤتمتة النقد الاجنبى تجارة - خوارزميات الأمثلة


إستراتيجيات تجارة الفوركس الخوارزمية نتيجة للجدل الأخير، كان سوق الفوركس يخضع لمزيد من التدقيق. وأدينت أربعة بنوك رئيسية بالتآمر للتلاعب في أسعار صرف العملات الأجنبية، التي وعدت بتجار إيرادات كبيرة ذات مخاطر منخفضة نسبيا. على وجه الخصوص، وافقت أكبر البنوك في العالم على التلاعب في سعر الدولار الأمريكي واليورو من عام 2007 حتى عام 2013. سوق الفوركس غير منظم بشكل ملحوظ على الرغم من التعامل مع 5 تريليون - ورثة من المعاملات كل يوم. ونتيجة لذلك، حث المنظمون على اعتماد التداول الحسابي. وهو نظام يستخدم نماذج رياضية في منصة إلكترونية لتنفيذ الصفقات في السوق المالية. بسبب ارتفاع حجم المعاملات اليومية، تجارة الفوركس خوارزمية يخلق المزيد من الشفافية والكفاءة ويزيل التحيز البشري. وهناك عدد من الاستراتيجيات المختلفة التي يمكن أن يتبعها التجار أو الشركات في سوق الفوركس. على سبيل المثال، يشير التحوط التلقائي إلى استخدام الخوارزميات للتحوط من مخاطر المحفظة أو إلغاء المواقف بكفاءة. وإلى جانب التحوط التلقائي، تشمل الاستراتيجيات الحسابية التداول الإحصائي، وتنفيذ الخوارزميات، والوصول المباشر إلى الأسواق، وتداول الترددات العالية، وكل ذلك يمكن تطبيقه على معاملات الفوركس. التحوط التلقائي في الاستثمار، التحوط هو مجرد وسيلة لحماية الأصول الخاصة بك من خسائر كبيرة عن طريق تقليل المبلغ الذي يمكن أن تخسر إذا حدث شيء غير متوقع. في التداول الخوارزمي، يمكن التحوط الآلي من أجل الحد من تعرض التجار للمخاطر. وتتبع أوامر التحوط التي يتم إنشاؤها تلقائيا نماذج محددة من أجل إدارة ومراقبة مستوى مخاطر المحفظة. في سوق الفوركس، فإن الطرق الرئيسية للتحوط هي من خلال العقود الفورية وخيارات العملات. العقود الفورية هي شراء أو بيع عملة أجنبية مع التسليم الفوري. وقد نما سوق الفوركس فبريكس بشكل ملحوظ من أوائل 2000s بسبب تدفق منصات حسابي. وعلى وجه الخصوص، فإن الانتشار السريع للمعلومات، كما يتجلى في أسعار السوق، يتيح فرصا للمراجحة. وتتحقق فرص المراجحة عندما تصبح أسعار العملات غير محاذاة. المثلثات المثلثة. كما هو معروف في سوق الفوركس، هو عملية تحويل عملة واحدة إلى نفسه من خلال عدة عملات مختلفة. ويمكن للمتداولين الخوارزميين وذوي الترددات العالية تحديد هذه الفرص فقط عن طريق البرامج الآلية. كمشتقات. تعمل خيارات الفوركس بطريقة مماثلة كخيار على أنواع أخرى من الأوراق المالية. وتتيح خيارات العملات الأجنبية للمشتري الحق في شراء أو بيع زوج العملات بسعر صرف معين في مرحلة ما في المستقبل. برامج الكمبيوتر لديها الخيارات الثنائية الآلية كوسيلة بديلة للتحوط العملات الأجنبية. الخيارات الثنائية هي نوع من الخيارات حيث تأخذ المكافآت واحدة من نتيجتين: إما التجارة يستقر عند الصفر أو بسعر الإضراب المحدد مسبقا. التحليل الإحصائي لا يزال التحليل الإحصائي في إطار صناعة التمويل أداة هامة في قياس تحركات الأسعار للأمن بمرور الوقت. وفي سوق الفوركس، تستخدم المؤشرات الفنية لتحديد الأنماط التي يمكن أن تساعد في التنبؤ بتحركات الأسعار في المستقبل. والمبدأ القائل بأن التاريخ يكرر نفسه أمر أساسي للتحليل التقني. وبما أن أسواق الفوركس تعمل 24 ساعة في اليوم، فإن كمية المعلومات القوية تزيد بالتالي من الدلالة الإحصائية للتنبؤات. ونظرا للتطور المتزايد لبرامج الحاسوب، تم إنشاء الخوارزميات وفقا للمؤشرات الفنية، بما في ذلك المتوسط ​​المتحرك التقارب (ماسد) ومؤشر القوة النسبية (رسي). وتقترح البرامج الحسابية أوقاتا معينة ينبغي فيها شراء أو بيع العملات. التنفيذ الخوارزمي يتطلب التداول الخوارزمي إستراتيجية قابلة للتنفيذ يمكن لمديري الصناديق استخدامها لشراء أو بيع كميات كبيرة من الأصول. تتبع أنظمة التداول مجموعة محددة مسبقا من القواعد ويتم برمجتها لتنفيذ أمر بموجب أسعار ومخاطر وآفاق استثمارية معينة. وفي سوق الفوركس، يتيح الوصول المباشر إلى الأسواق للمتداولين من جانب الشراء تنفيذ أوامر الفوركس مباشرة إلى السوق. ويحدث الوصول المباشر إلى الأسواق من خلال منصات إلكترونية، مما يؤدي في كثير من الأحيان إلى خفض التكاليف وأخطاء التداول. وفي العادة، يقتصر التداول في السوق على الوسطاء وصانعي السوق، إلا أن إمكانية الوصول المباشر إلى الأسواق توفر للشركات القائمة على الشراء إمكانية الوصول إلى البنية التحتية من جانب البائعين، مما يمنح العملاء قدرا أكبر من السيطرة على الصفقات. ونظرا لطبيعة التداول الخوارزمي وأسواق الفوركس، فإن تنفيذ الطلبات سريع للغاية، مما يسمح للتجار بالاستيلاء على فرص تداول قصيرة الأجل. ارتفاع وتيرة التداول كما فرعية فرعية الأكثر شيوعا من التداول الخوارزمية، وتجارة عالية التردد أصبحت شعبية متزايدة في سوق الفوركس. استنادا إلى خوارزميات معقدة، وتجارة عالية التردد هو تنفيذ عدد كبير من المعاملات بسرعة عالية جدا. ومع استمرار تطور السوق المالية، تسمح سرعات التنفيذ السريعة للمتداولين بالاستفادة من الفرص المربحة في سوق الفوركس، حيث تم تصميم عدد من استراتيجيات التداول عالية التردد للتعرف على المواقف المربحة والسيولة المربحة. يتم تنفيذ أوامر المقدمة بسرعة، يمكن للتجار الاستفادة من التحكيم في تأمين الأرباح الخالية من المخاطر. نظرا لسرعة التداول عالية التردد، ويمكن أيضا أن يتم التحكيم عبر بقعة والأسعار في المستقبل من أزواج العملات نفسها. ويؤكد محامي التداول عالي التردد في سوق العملات دورها في خلق درجة عالية من السيولة والشفافية في الصفقات والأسعار. وتميل السيولة إلى أن تكون جارية ومركزة نظرا لوجود عدد محدود من المنتجات مقارنة بالأسهم. وفي سوق الفوركس، تهدف استراتيجيات السيولة إلى الكشف عن الاختلالات في النظام واختلافات الأسعار بين زوج من العملات. يحدث اختلال في النظام عندما يكون هناك عدد زائد من أوامر الشراء أو البيع لأصل أو عملة معينة. وفي هذه الحالة، يعمل تجار الترددات العالية كمزودين للسيولة، ويكتسبون الفارق عن طريق التحكيم في الفرق بين سعر الشراء والبيع. الخط السفلي يدعو الكثيرون إلى زيادة التنظيم والشفافية في سوق الفوركس في ضوء الفضائح الأخيرة. ويمكن أن يؤدي التبني المتزايد لنظم التداول الخوارزمية في الفوركس إلى زيادة الشفافية في سوق الفوركس. وإلى جانب الشفافية، من المهم أن يظل سوق الفوركس سائدا مع تقلبات أسعار منخفضة. استراتيجيات التداول الحسابية، مثل التحوط التلقائي، والتحليل الإحصائي، وتنفيذ الخوارزمية، والوصول المباشر إلى الأسواق وتجارة عالية التردد، يمكن أن يعرض تناقضات الأسعار، والتي تشكل فرص مربحة للتجار. نوكرون الخوارزمية الجينية في فوريكس أنظمة التداول باستخدام خوارزمية جينية لخلق مربحة الفوركس للتجارة إستراتيجية. الخوارزمية الجينية في اللحاء الشبكات العصبية البرمجيات فيدفوروارد باكبروباغاتيون الشبكة العصبية تطبيق الحسابات الجينية على أساس تداول العملات الأجنبية. يستخدم هذا المثال مفاهيم وأفكار المقالة السابقة، لذا يرجى قراءة الخوارزمية الجينية للشبكة العصبية في فوريكس ترادينغ سيستمز أولا، على الرغم من أنها ليست إلزامية. حول هذا النص أولا وقبل كل شيء، يرجى قراءة إخلاء المسؤولية. هذا هو مثال على استخدام اللحاء الشبكات العصبية وظائف البرمجيات الخوارزمية الجينية، وليس مثالا على كيفية القيام التداول المربح. أنا لست المعلم الخاص بك، لا ينبغي أن تكون مسؤولة عن الخسائر الخاصة بك. كورتيكس نيورال نيتوركس البرامج لديها شبكات عصبية في ذلك، و ففب ناقشنا من قبل هو طريقة واحدة فقط لاختيار استراتيجيات تداول العملات الأجنبية. بل هو تقنية جيدة وقوية وعند تطبيقها بشكل صحيح، واعد جدا. ومع ذلك، فإنه لديه مشكلة - لتعليم شبكة العصبية تن. نحن بحاجة إلى معرفة الناتج المطلوب. فمن السهل أن تفعل عندما نفعل وظيفة تقريب، ونحن فقط تأخذ القيمة الحقيقية وظيفة، لأننا نعرف ما ينبغي أن يكون. عندما نفعل التنبؤ الشبكة العصبية. ونحن نستخدم تقنية (وصفها في المواد السابقة) لتعليم الشبكة العصبية على التاريخ، مرة أخرى، إذا كنا نتوقع، ويقول، سعر الصرف، ونحن نعلم (أثناء التدريب) ما هو التنبؤ الصحيح. ومع ذلك، عندما نقوم ببناء نظام التداول، ليس لدينا أي فكرة عن قرار التداول الصحيح، حتى لو كنا نعرف سعر الصرف كما في الواقع، لدينا العديد من استراتيجيات تداول العملات الأجنبية يمكننا استخدامها في أي وقت من الأوقات، و ونحن بحاجة إلى العثور على واحد جيد - كيف ماذا يجب أن تغذية كما المخرج المطلوب من الشبكة العصبية لدينا إذا كنت اتبعت المادة السابقة، كما تعلمون، أننا قد خدع للتعامل مع هذه المشكلة. علمنا الشبكة العصبية للقيام سعر الصرف (أو مؤشر سعر الصرف القائم) التنبؤ، ثم استخدم هذا التنبؤ للقيام التداول. ثم، خارج الشبكة العصبية جزء من البرنامج، اتخذنا قرارا على الشبكة العصبية هي أفضل واحد. الخوارزميات الجينية يمكن التعامل مع هذه المشكلة مباشرة، فإنها يمكن حل المشكلة المذكورة كما تجد أفضل إشارات التداول. في هذه المقالة نحن ذاهبون لاستخدام اللحاء العصبية الشبكات البرمجيات لإنشاء مثل هذا البرنامج. استخدام الخوارزميات الوراثية الخوارزمية الجينية هي متطورة جدا، ومتنوعة جدا. إذا كنت تريد أن تتعلم كل شيء عنهم، وأنا أقترح عليك استخدام ويكيبيديا، وهذه المقالة هي فقط حول ما اللحاء الشبكات العصبية البرمجيات يمكن القيام به. وجود اللحاء الشبكات العصبية البرمجيات. يمكننا إنشاء شبكة عصبية تأخذ بعض المدخلات، مثلا، قيم مؤشر، وتنتج بعض الإخراج، مثلا، إشارات التداول (شراء، بيع، عقد). وقف الخسارة تأخذ مستويات الربح للوظائف التي سيتم فتحها. وبطبيعة الحال، إذا كنا البذور هذه الأوزان شبكة العصبية عشوائيا، فإن نتائج التداول تكون رهيبة. ومع ذلك، دعونا نقول نحن خلق عشرات من هذه الشبكات الوطنية. ثم يمكننا اختبار أداء كل منهم، واختيار أفضل واحد، والفائز. كان هذا هو الجيل الأول من ن. للاستمرار في الجيل الثاني، نحن بحاجة إلى السماح للفائز لدينا الإنجاب، ولكن لتجنب الحصول على نسخ متطابقة، يتيح إضافة بعض نويس عشوائي إلى الأوزان النسبية. في الجيل الثاني، لدينا لدينا الجيل الأول الفائز والنسخ ناقصة (متحور). يتيح إجراء الاختبار مرة أخرى. سيكون لدينا الفائز آخر، وهو أفضل ثم أي شبكة العصبية الأخرى في الجيل. وما إلى ذلك وهلم جرا. نحن ببساطة نسمح للفائزين بالتكاثر، والقضاء على الخاسرين، تماما كما هو الحال في تطور الحياة الحقيقية، وسوف نحصل على أفضل شبكة تداولنا العصبية. دون أي معرفة مسبقة حول ما ينبغي أن يكون نظام التداول (الخوارزمية الجينية) مثل. الخوارزمية الجينية للشبكة العصبية: مثال 0 هذا هو أول مثال خوارزمي جيني. و بسيطة جدا. نحن ذاهبون إلى المشي من خلال ذلك خطوة بخطوة، لتعلم كل الحيل أن الأمثلة التالية سوف تستخدم. يحتوي الرمز على تعليقات مضمنة، لذلك يتيح التركيز فقط على اللحظات الرئيسية. أولا، أنشأنا شبكة عصبية. ويستخدم الأوزان العشوائية، ولم يتم تعليمه بعد. ثم، في دورة، ونحن جعل 14 نسخة منه، وذلك باستخدام موتاتيون فومكتيون. هذه الوظيفة يجعل نسخة من شبكة العصبية المصدر. مضيفا قيم عشوائية من 0 إلى (في حالتنا) 0.1 لجميع الأوزان. نحن نحافظ على مقابض ل 15 نونس الناتجة في صفيف، يمكننا أن نفعل ذلك، والمقبض هو مجرد عدد صحيح. السبب في أننا نستخدم 15 ننس لا علاقة له مع التداول: اللحاء الشبكات العصبية البرمجيات يمكن رسم ما يصل الى 15 خطوط على الرسم البياني في وقت واحد. يمكننا استخدام نهج مختلفة للاختبار. أولا، يمكننا استخدام مجموعة التعلم، كل ذلك في وقت واحد. ثانيا، يمكننا اختبار على سبيل المثال، 12000 ريسوردس (من أصل 100000)، والمشي من خلال مجموعة التعلم، من البداية إلى النهاية. وهذا سيجعل ليرنيغس مختلفة، ونحن سوف ننظر للشبكة العصبية ق التي هي مربحة على أي جزء معين من البيانات، وليس فقط على مجموعة كاملة. النهج الثاني يمكن أن يعطينا مشاكل، إذا تغير البيانات، من البداية إلى النهاية. ثم ستتطور الشبكة، وستحصل على القدرة على التداول في نهاية مجموعة البيانات، وفقدان القدرة على التجارة في بدايتها. لحل هذه المشكلة، ونحن في طريقنا لاتخاذ عشوائي 12000 سجلات شظايا من البيانات، وإطعامه إلى الشبكة العصبية. هو مجرد دورة لا نهاية لها، كما 100000 دورات لن يتم الوصول إليها في سرعة لدينا. نضيف أدناه طفل واحد لكل شبكة، مع أوزان مختلفة قليلا. ملاحظة، أن 0.1 للطفرة تانج ليس الخيار الوحيد، كما هو الأمر الواقع، حتى هذه المعلمة يمكن أن يكون الأمثل باستخدام الخوارزمية الجينية. تضاف ننس التي تم إنشاؤها حديثا بعد 15 منها القائمة. بهذه الطريقة لدينا 30 ننس في صفيف، 15 القديمة و 15 جديدة. ثم سنقوم بالقيام بالدورة التالية من الاختبار، وقتل الخاسرين، من كلا الأجيال. للقيام الاختبار، ونحن نطبق الشبكة العصبية لبياناتنا، لإنتاج المخرجات، ومن ثم استدعاء وظيفة الاختبار، التي تستخدم هذه النواتج لمحاكاة التداول. يتم استخدام نتائج التداول للتنازل، والتي هي الأفضل. نحن نستخدم الفاصل الزمني لسجلات نلارن، من نستارت إلى نستارت نلارن، حيث نستارت هو نقطة عشوائية ضمن مجموعة التعلم. الرمز أدناه هو خدعة. والسبب الذي نستخدمه هو توضيح الحقيقة، أن الخوارزمية الجينية يمكن أن تخلق خوارزمية جينية. ولكن لن يكون بالضرورة أفضل واحد، وأيضا، لاقتراح، أن نتمكن من تحسين النتيجة، إذا كنا نعني بعض القيود على عملية التعلم. فمن الممكن، أن نظام التداول لدينا يعمل بشكل جيد جدا على الصفقات الطويلة، والفقراء جدا على القصير، أو العكس بالعكس. إذا، على سبيل المثال، الحرف الطويلة جيدة جدا، هذه الخوارزمية الجينية قد يفوز، حتى مع خسائر كبيرة على الصفقات قصيرة. لتجنب ذلك، ونحن تعيين المزيد من الوزن إلى الصفقات الطويلة في التداولات الفردية والقصيرة في دورات حتى. هذا هو مجرد مثال، ليس هناك ما يضمن، أنه سيحسن شيئا. المزيد عن ذلك أدناه، في مناقشة حول التصحيحات. من الناحية الفنية، لم يكن لديك للقيام بذلك، أو يمكن أن تجعل من مختلف. إضافة الربح إلى صفيف فرزها. فإنه يعود موضع الإدراج، ثم نستخدم هذا الموقف لإضافة مقبض الشبكة العصبية والتعلم واختبار الأرباح إلى صفائف غير فرزها. الآن لدينا بيانات للشبكة العصبية الحالية في نفس مؤشر مجموعة أرباحها. والفكرة هي الوصول إلى مجموعة من الشبكات الوطنية، مرتبة حسب الربحية. كما صفيف هو الفرز حسب الربح، لإزالة 12 من الشبكات، التي هي أقل ربحية، ونحن بحاجة فقط لإزالة ننس 0 إلى 14 تستند قرارات التداول على قيمة إشارة الشبكة العصبية، من وجهة النظر هذا البرنامج هو مطابق لأمثلة من المقال السابق. استراتيجية التداول الفوركس: مناقشة المثال 0 أولا وقبل كل شيء، يتيح إلقاء نظرة على الرسوم البيانية. الرسم البياني الأول للربح خلال التكرار الأول ليس جيدا على الإطلاق، كما ينبغي أن يتوقع، الشبكة العصبية يفقد المال (صورة تطور 00000.png نسخها بعد التكرار الأول من مجلد الصور): صورة للربح على دورة 15 هو أفضل، وأحيانا ، الخوارزمية الجينية يمكن أن تتعلم سريع حقا: ومع ذلك، لاحظ التشبع على منحنى الربح. ومن المثير للاهتمام أيضا أن ننظر في طريقة تغير الأرباح الفردية، مع الأخذ في الاعتبار، أن عدد منحنى، ويقول، 3 ليس دائما لنفس الشبكة العصبية. كما أنها ولدت وتنتهي في كل وقت: نلاحظ أيضا، أن القليل من النقد الأجنبي نظام التداول الآلي يؤدي الفقراء على الصفقات قصيرة، وأفضل بكثير على الأطوال، والتي قد تكون أو لا تكون ذات صلة للحقيقة، أن الدولار كان ينخفض ​​مقارنة مع اليورو خلال تلك الفترة. كما قد يكون لها علاقة مع معلمات مؤشرنا (ربما، نحن بحاجة إلى فترة مختلفة للسراويل القصيرة) أو اختيار المؤشرات. هنا هو التاريخ بعد 92 و 248 دورات: لدهشتنا، خوارزمية وراثية فشلت تماما. دعونا نحاول معرفة السبب، وكيفية مساعدة الوضع. أولا وقبل كل شيء، ليس كل جيل من المفترض أن يكون أفضل من بريفيوس واحد الجواب هو لا، على الأقل ليس ضمن النموذج الذي استخدمناه. إذا أخذنا التعلم الكامل مجموعة في وقت واحد، واستخدامها مرارا وتكرارا لتعليم لدينا ننس، ثم نعم، فإنها سوف تتحسن على كل جيل. ولكن بدلا من ذلك، أخذنا شظايا عشوائية (12000 السجلات في الوقت المناسب)، واستخدامها. سؤالان: لماذا فشل النظام على شظايا عشوائية من مجموعة التعلم، ولماذا استخدمنا مجموعة تعليمية كاملة حسنا. للإجابة على السؤال الثاني، فعلت. أداء ننس بشكل كبير - على مجموعة التعلم. وفشلت في اختبار مجموعة، لنفس السبب أنه فشل عندما استخدمنا التعلم فب. لوضعها بشكل مختلف، حصلت لدينا نونس أوفرسبيسياليزد، تعلموا كيفية البقاء على قيد الحياة في البيئة التي تستخدم ل، ولكن ليس خارج ذلك. هذا يحدث الكثير في الطبيعة. كان القصد من النهج الذي أخذنا بدلا من ذلك للتعويض عن ذلك، من خلال إجبار ننس لأداء جيدة على أي جزء عشوائي من مجموعة البيانات، بحيث نأمل، فإنها يمكن أن تؤدي أيضا على مجموعة اختبار غير مألوف. بدلا من ذلك، فشلت كل من الاختبار وعلى مجموعة التعلم. تخيل الحيوانات، الذين يعيشون في الصحراء. وهناك الكثير من الشمس، لا الثلوج على الإطلاق. هذا هو ميتافور للسوق ريج، كما لدينا بيانات ننس تلعب دور البيئة. الحيوانات تعلمت أن تعيش في الصحراء. تخيل الحيوانات التي تعيش في مناخ بارد. الثلج ولا أشعة الشمس على الإطلاق. حسنا، تم تعديلها. ومع ذلك، في تجربتنا، وضعنا عشوائيا لدينا ن في الصحراء، في الثلج، في الماء، على الأشجار. من خلال تقديم لهم شظايا مختلفة من البيانات (ارتفاع عشوائيا، السقوط، شقة). ماتت الحيوانات. أو، لوضعها بشكل مختلف، اخترنا أفضل شبكة العصبية لمجموعة البيانات العشوائية 1، والتي، على سبيل المثال، كان لارتفاع السوق. ثم قدمنا، إلى الفائزين وأطفالهم، بيانات الأسواق المتساقطة. كان أداء الشبكات الوطنية ضعيفا، أخذنا أفضل أداء ضعيف، ربما، أحد الأطفال المتحولين، الذي فقد القدرة على التجارة في الأسواق الصاعدة، ولكن حصلنا على بعض القدرة على التعامل مع هبوط واحد. ثم تحولنا الجدول مرة أخرى، ومرة ​​أخرى، حصلنا على أفضل أداء - ولكن أفضل بين الفقراء الأداء. نحن ببساطة لم نعط لدينا ننس أي فرص لتصبح عالمية. هناك تقنيات تسمح الخوارزمية الجينية لتعلم معلومات جديدة دون فقدان الأداء على المعلومات القديمة (بعد كل شيء، يمكن للحيوانات أن تعيش في الصيف وفي فصل الشتاء، والحق لذلك تطور قادر على التعامل مع التغييرات المتكررة). قد نناقش هذه التقنيات في وقت لاحق، على الرغم من أن هذه المقالة هي أكثر حول استخدام اللحاء الشبكات الشبكات العصبية البرمجيات. أكثر من بناء نظام تداول آلي فوريكس ناجح. الشبكة العصبية الخوارزمية الجينية: مثال 1 الآن حان الوقت للحديث عن التصحيحات. وهناك خوارزمية وراثية بسيطة أنشأناها خلال الخطوة السابقة لها عيوب رئيسية. أولا، فشلت في التجارة مع الربح. على ما يرام، يمكننا أن نحاول استخدام نظام مدربين جزئيا (كان مربحا في البداية). العيب الثاني هو أكثر خطورة: ليس لدينا السيطرة على الأشياء، أن هذا النظام لا. على سبيل المثال، قد تتعلم أن تكون مربحة، ولكن مع سحب ضخمة. بل هو حقيقة معروفة، أنه في واقع الحياة، يمكن للتطور تحسين أكثر من معلمة واحدة في وقت واحد. على سبيل المثال، يمكننا الحصول على حيوان، التي يمكن تشغيلها بسرعة وتكون مقاومة للبرد. لماذا لا تحاول أن تفعل الشيء نفسه في نظام التداول الآلي الفوركس لدينا. هذا عندما نستخدم التصحيحات، والتي ليست سوى مجموعة من العقوبات إضافية. قل، يتداول نظامنا مع سحب 0.5، في حين نريد أن نؤكد ذلك إلى 0 - 0.3 الفاصل الزمني. ولإخبار النظام بأنه ارتكب خطأ، فإننا نقلل أرباحه (واحدة تستخدم لتحديد، والتي فازت الخوارزمية الجينية) إلى درجة، وهذا يتناسب مع حجم د. ثم، خوارزمية التطور يعتني بقية. هناك عدد قليل من العوامل التي نريد أن نأخذها في الاعتبار: قد نرغب في الحصول على عدد متساو تقريبا من عمليات الشراء والبيع، ونحن نريد أن يكون لدينا المزيد من العمليات المربحة، ثم الإخفاقات، قد نرغب في رسم بياني للربح تكون خطية وهلم جرا. في تطور01.tsc نقوم بتنفيذ مجموعة بسيطة من التصحيحات. أولا وقبل كل شيء، نستخدم بعض العدد الكبير لقيمة تصحيح أولية. نحن نضاعف ذلك إلى القيم الصغيرة (عادة، بين 0 و 1)، اعتمادا على العقوبة التي نريد تطبيقها. ثم نقوم بضرب أرباحنا لهذا التصحيح. ونتيجة لذلك، يتم تصحيح الربح، لتعكس مدى توافق الخوارزمية الجينية مع معاييرنا الأخرى. ثم نستخدم النتيجة للعثور على الشبكة العصبية الفائز. استراتيجية التداول الفوركس: مناقشة المثال 1 المثال 1 يعمل أفضل بكثير، من المثال 0. خلال أول 100 دورة، تعلم الكثير، والرسوم البيانية الربح تبدو مطمئنة. ومع ذلك، كما هو الحال في المثال 0، الصفقات الطويلة هي أكثر ربحية بكثير، وهو ما يعني على الأرجح أن هناك مشكلة في نهجنا. ومع ذلك، وجد النظام وجود توازن بين زوجين من الظروف الأولية المتناقضة: هناك بعض الديناميات الإيجابية سواء في مجموعة التعلم، والأهم من ذلك، في مجموعة الاختبار. أما بالنسبة لمزيد من التعلم، في دورة 278 يمكننا أن نرى، أن نظامنا حصلت أوفيرترايند. وهو ما يعني أننا ما زلنا نحرز تقدما في مجموعة التعلم: لكن مجموعة الاختبارات تظهر ضعف: هذه مشكلة شائعة مع ننس: عندما نعلمها على مجموعة التعلم، فإنها تتعلم التعامل معها، وأحيانا تتعلم جيدا - درجة، عندما يفقد الأداء على مجموعة الاختبار. للتعامل مع هذه المشكلة، يتم استخدام حل تقليدي: نبقي تبحث عن الشبكة العصبية. أن أداء أفضل على مجموعة اختبار، وحفظه، الكتابة فوق أفضل واحد سابق، في كل مرة يتم التوصل إلى ذروة جديدة. هذا هو نفس النهج، استخدمنا في التدريب ففب، إلا، وهذه المرة علينا أن نفعل ذلك أنفسنا (إضافة رمز، التي تبحث عن أفضل شبكة العصبية على مجموعة اختبار، ودعوة سافن، أو تصدير الأوزان من الشبكة العصبية إلى ملف). بهذه الطريقة، عند إيقاف التدريب الخاص بك، سيكون لديك أفضل أداء على اختبار مجموعة حفظ وانتظاركم. لاحظ أيضا أنه ليس الحد الأقصى. الربح كنت بعد، ولكن الأداء الأمثل، لذلك النظر في استخدام التصحيحات، عند البحث عن أفضل أداء على مجموعة اختبار. الخوارزمية الجينية فوركس التحليل الفني: أين الآن بعد أن حصلت على الشبكة العصبية الفائز الخاص بك. يمكنك اتباع الخطوات، وصفها في المادة السابقة، لتصدير الأوزان من تلك الشبكة العصبية. ومن ثم استخدامها في منصة التداول في الوقت الحقيقي الخاص بك، مثل ميتا التاجر، محطة التجارة وهلم جرا. بدلا من ذلك، يمكنك التركيز على طرق أخرى لتحسين الشبكة العصبية. على عكس خوارزمية ففب، هنا يمكنك الحصول على أفاي من استخدام التعلم واختبار مجموعات، ونقل التعلم المتسلسل. تحميل اللحاء ترتيب اللحاء عرض قائمة الأسعار الرؤية مهمة جدا لهذا الموقع. إذا كنت ترغب في ذلك يرجى ربط هذا العنوان

No comments:

Post a Comment